Workbook Physical Simulation
Interdisciplinary Exercises from the STEM Fields
www.physolator.com

Exercise Sheet 6

Projectile Motion

15

10

In this exercise sheet the trajectory of a ball is to be calculated. During the flight, the ball experiences a
flow resistance force through the air, which is directed against the movement. The trajectory depends on
various parameters such as the initial position, the initial speed, the diameter of the ball and its mass.
Depending on these parameters, it shall be determined how far the ball flies and how high it reaches
during the flight.

The trajectory of the ball, its current speed and acceleration shall be displayed graphically. Similar to
exercise sheet 5 your could program such a graphic component yourself. Instead, an existing graphic
component called MechanicsTVG is to be used in this task sheet. This graphic component is used to
visualize physical systems consisting of point-shaped masses. With MechanicsTVG it is possible to
graphically display the trajectory, speed and inclination of one or more point-shaped masses.
MechanicsTVG can be used in any physical system. MechanicsTVG contains various parameters that can
be used to adapt MechanicsTVG to the different requirements of the physical systems. The graphics
component MechanicsTVG will not only be used in this task sheet, but also in several other task sheets.

Preparation

Add the mechanics.jar library to your project. The file mechanics.jar can be found on the website in the
area of this task. First, copy this file to your project directory. Then add this library to your classpath. In
Eclipse click on the file mechanics.jar - right mouse button - build path - add to build path. Ready. From
now on you can use the classes in this library in your project, especially the class MechanicsTVG.

Copy the following program code:

Exercise Sheet 6 Projectile Motion

import static java.lang.Math.*;
import mechanics.tvg.MechanicsTVG;
import de.physolator.usr.*;

public class ProjectileMotion extends PhysicalSystem {

public void initGraphicsComponents(GraphicsComponents g, Structure s, Recorderrr,

SimulationParameters sp) {

MechanicsTVG t = new MechanicsTVG(this, s, r);

t.geometry.setUserArea(0, 150, 0, 50);

t.showPaths = true;

t.showVelocity = true;

t.showAcceleration = true;

t.velocityScaling = 1;

t.accelerationScaling = 1;

t.showLabels = false;

t.addPointMass("x", "y", "vx", "vy", "ax", "ay");

g.addTVG(t);

Explanation of the program code

This program code uses the graphics component MechanicsTVG. To do this, an instance of this class is
first created in the initGraphicsComponents method. Several settings are made, with the help of which the
graphic component is adapted to the requirements of the physical system ProjectileMotion. The visible
range of the coordinate system is defined with setUserdrea — as in exercise sheet 3. It is specified that the
paths of the point-shaped masses are to be displayed (showLabels) and that their speed and acceleration
are to be represented by arrows (showVelocity, showAcceleration). velocityScaling and
accelerationScaling determine the correlation between vector length and the corresponding velocity or
acceleration, respectively.

In this exercise sheet only one point-shaped mass is to be represented: the ball. The position of the ball is
(x,), its speed (vx, vy) and its acceleration (ax, ay). The addPointMass method specifies that the graphics
component MechanicsTVG is to access the variables x, y, vx, vy, ax and ay in the physical systems in
order to graphically display this point-shaped mass. The physical system ProjectileMotion does not yet
contain these variables, but they shall be added in the first exercise.

With MechanicsTVG several point-shaped masses could be displayed at the same time. If there were
several labels, it would make perfect sense to attach labels to the masses. In this case, there is only one
point-shaped mass. This is why shwoLabels is set to false.

Exercise 1

A ball is thrown. Let (loo)m be the starting position of the ball and let (gg)% be its initial speed. The

ball experiences an acceleration g = 9,817 due to gravity, which pulls it downwards.
N

Program this physical system in the same way as exercise sheet 1 by adding declarations for the physical
variables, specifying the initial values of the physical variables and defining the derivation relationships
between the physical variables. If required: Program a method f with the formulas to determine the
dependent variable values.

Use the variable names x, y, vx, vy, vy, ax and ay, where (x, y) stands for the position of the ball, (vx, vy)
for its speed and (ax, ay) for the acceleration the ball experiences. After loading and starting the physical
system you can see the graphic component MechanicsTVG on your screen. It shows the launching trace
of the throw on the screen.

Aufgabenblatt 6 Projectile Motion

Exercise 2

The flow resistance has not yet been taken into account. Extend the existing physical system in such a
way that the flow resistance is also taken into account when calculating the acceleration (exercise 1). It is
assumed that the ball has a mass of m=0,1kg and a radius of »=0,1m . The following equation applies
to the flow resistance F; . Be aware that the flow resistance F, is always directed in the opposite

direction to the direction of movement v.
! 2
Fp =34c,pv

In this equation A=r’m is the cross-sectional area of the ball, ¢,=0,4 is the flow resistance coefficient
for a spherical body and p=1,2041 % is the density of air.

Due to the flow resistance, the ball flies much less far. Adjust the parameter value of setUserArea in a
suitable way.

Exercise 3

Determine how high the ball flies Additionally, determine the location where the ball reaches its highest
altitude and determine the point in time when it reaches this location.

The point in time at which the ball reaches the highest point is characterized by the fact that at this point
in time vy has the value 0. Initially, vy is positive. As soon as the ball reaches the highest point, vy falls
below 0. Insert the following code into your class:

public ThresholdTrigger tr1 = new ThresholdTrigger(() -> vy < 0);

This additional program code causes an event to be triggered whenever vy exceeds or falls below the
threshold value 0. The central information in this piece of program is the condition vy<(. The boolean
value of this conditions changes between frue and false forth and back whenever the vy exceeds or falls
below the threshold value 0.

The name of the variable #/ has no special meaning. If you work in a physical system with multiple
triggers, you have to give each variable a different name. The triggers could then, for example, be named
trl, tr2, tr3,etc..

Replace the previous trigger with the following code:

public ThresholdTrigger tr1 = new ThresholdTrigger(() -> vy < 0)
.setName("high point").setIinfo(() -> "x="+x + " y="+y).setDoPrint(true);

In contrast to the previous program code, this program code assigns a name to the event, namely "high
point". This additional information becomes relevant when working with different events. The method
call setDoPrint(true) specifies that an output isprinted on the console every time this event occurs. A one-
line message then appears on the console stating that a threshold event has occurred, the name (if any)
and the time. You can use the set/nfo method to output other variable values in this row in addition to the
time. In this case, the values of x and y are printed.

Exercise 4

Determine how far the ball flies. Determine when and where the ball reaches the ground (y=0). Use the
techniques as in exercise 3.

Exercise 5

Determine the balls position at time t=0.27134s.

Exercise Sheet 6 Projectile Motion

During simulation, the Physolator proceeds step by step and calculates the variable values for every
simulation state. The step size can be varied. Depending on the selected setting, it is also possible for the
Physolator to determine the step size for each step and to orientate itself towards certain accuracy targets
when determining the step size. Therefore, it cannot be assumed that the Physolator determines the state
of the physical system at time ¢=0.27134s. To force the state to be determined at time 7=0.27134s, a
physical event must be created at this time. The TimeTrigger can be used for this purpose.

Insert the following code into your ProjectileMotion class:

public TimeTrigger tr3 = new TimeTrigger(0.27134)
.setName("time 1").setInfo(() -> "x=" + x + " y=" + y).setDoPrint(true);

The functionality of the TimeTrigger class is similar to that of the ThresholdTrigger class. Instead of a
threshold value condition, a time is passed to the constructor. This class also has the methods setName,
setInfo and setDoPrint.

The next step is to determine the position of the ball at several points in time: 0.27134s, 0.4525s and
1.273s. To achieve this, use the following program code instead of the previous time trigger #3, without a
special name for the events in this program code.

public TimeTrigger tr4 = new TimeTrigger(0.27134, 0.4525, 1.273)
.setinfo(() -> "x="+ x + " y=" + y).setDoPrint(true);

The next step is to determine the position at several points in time, which are described by a sequence of
points in time. The position is to be determined in equal intervals of 0.27/34s. To do this, use the
following program code.

public TimeTrigger tr5 = new TimeTrigger((i)-> (i+1)*0.2713)
.setinfo(() -> "x="+ x + " y=" + y).setDoPrint(true);

Remark: The first event sequence occurs at 0.27134s. The count for this sequence of numbers starts at
i=0. Therefore, the i event occurs at (i+1)*0.2713s.

Exercise 6

0
10
the angle at which the ball reaches its largest height and determine the angle at which the ball reaches the
maximum flight distance, i.e. the maximum distance at which the ball hits the ground. The two angles for
the largest height and largest flight distance shall be determined with an accuracy of 3 decimal places. In
addition, the greatest possible height and maximum flight distance shall also be determined.

Let us assume, that the ball's initial speed be v, = 28% and that its initial position be ()m . Determine

Recommendations: First add the constants v0 and phi to your program code. v0 stand for the initial
velocity, phi stands for the starting angle measured in degrees relative to the horizontal. Calculate the
initial values of vx and vy from v0 and phi. Perform several simulation runs with different values for phi
and observe the height and flight distance achieved. Use interval nesting to find the phi values with the
maximum height and the maximum flight distance, respectively.

Exercise 7

Now again, as in exercise 1, a throw is to be considered without the flow resistance of the air. The values
for the starting position and velocity are the ones from exercise 1. In a throw without flow resistance, the
trajectory of the ball describes a parabola. In this case, the throw height and throw distance can also be
determined directly without simulation using paper and pencil. First determine these values with paper
and pencil.

Aufgabenblatt 6 Projectile Motion

£ 20| m

20/ s
density p to 0, the flow resistance disappears. Compare your own calculated results for the throw height
and throw distance with the simulation result.

Then run a simulation. Use the previous program code with an initial speed o . If you set the air

